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The momentum representation offers new opportunities to obtain
high quality approximate solutions to the Hartree—Fock equations. The
seH -consistent field method is applied here to the ground states of
four- {Li~, Be, and B ) and ten- (F~, Ne, and Na*) electron atoms
in momentum space. Analytical calculations using momentum space
gaussian functions, together with Gauss guadrature and gaussian fit,
are combined to compute the atomic Hartree-Fock orbitals. % 1994

Academic Press, Inc,

L INTRODUCTION

Since the beginning of the eighties, several authors have
worked directly in momentum space to solve the
Hartree-Fock (HF) equations for smali atoms [1-8] and
molecules {1, 2, 9-14]. The momentum space HF equa-
tions are derived by applying the Fourier transform to the
usual position space expressions. This transformation being
unitiry, the representations of the FHE equations in both
spaces are cquivalent and therelore contain the same
information, but arc expressed dilferently. Solving the
momentum space HEF equations also requires an iterative
procedure, but the algorithms arc different and offer
specific advantages over the position space representation
{1,2,9,11]. This point will be stressed in the paper by
describing an alternative strategy to avoid direct numerical
calculations of the troublesome convolution products which
are central to the momentum space HF eguations.
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The strategies previously developed have been either
purely numerical or purely anaiytical. The numerical
computations, using either FFT [1,2] or quadratures
[9-11, 14], have led to results very close to the HF limit.
The drawbacks of these approaches are the need of large
computer times and the difficulty to control the numerical
accuracy. The approximate analytical solution to the HF
equations obtained through a single iteration step, for
atoms isoelectronic to He [3-5] and Be [6,7] and for
molecules such as H, [12] or HeH ™ [ 13 ] yicids reasonably
accurate results and is computationally fast. This direction
is limited to a single iteration because the generation and
calculation of expressions occurring in the next ilerations
become untractable. The purpose of this paper is to develop
a mixed approach, numerical and analytical, to keep the
convenience and the rapidity of the first iteration approach,
as well as the possibility to carry out scveral iterations to
converge towards the HE limit within a  prescribed
accuracy. The mecthod is applied to the ground states of
four- (Li~, Be, and B*) and ten- (F—, Ne, and Na*)
electron atoms.

In Section IT the momentum space closed-shell atomic
HF equations and the principles of the momentum space
variation-iteration method used to solve the HF equations
are recalled. In Section [H the analytical and numerical
strategies are described in detail, and the results obtained
for Li™, Be, B*, F~, Ne, and Na* are discussed in
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Section IV. The paper ends with some considerations for
future developments (Section V).

II. MOMENTUM SPACE CLOSED-SHELL ATOMIC
HF EQUATIONS

The momentum space closed-shell atomic HF equations
describing an atomic species of m electrons and of nuclear
charge Z may be written as [9, [5]
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where W ;(q), the convolution product of ¢,(p) and ¢,(p), is
defined as

Wy(@)= | dp ¢2(p) 4,(p —q) )

The method to solve the HF equations in momentum
space, Eq. (1), was first proposed by Navaza and Tsoucaris
[97]; it is similar to a self-consistent ficld scheme and it
basicaily includes lour steps (a detailed account can also be
found in Ref. [167]):

Step 1. Initialization of the procedure. A set of trial
functions is chosen, and the corresponding orbital energies
are calculated directly in momentum space,
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Step 2. Tteration of the wavefunction. Knowing the
functions ¢*'(p) and energies ¢¥){p) at the k th iteration, the
next iterates are derived according to the method originally
proposed by Kellogg [17] and Svartholm [18], but
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modified in our case to deal with nonbound states as
formulated in Eq. (4},
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where E ¥ ig related to the orbital energy ¢*? by the relation

ER =¢b_C, i=1,2,..,m/2 (5)
Indeed, for bound states, the orbital energies, &!®
(E¥ =g, C=0), have negative values and therefore
[p%/2— E'®7is never equal to zero, so that Eq. (4) does not
experience divergencies. For nonbound states (g;=0)
singularity arises and an energy shift C (C>0, £ <0) is
performed to aveid this singularity.

In a previous study [19] we have noted that, if the
functions are directly used as received, the iterative scheme
does not converge. Thus, at the end of each iteration step,
the functions are systematically reorthonormalized with the
Gram-Schmidt procedure that we have found to be best
suited [6]1.

Step 3. Calculation of energies of the iterated functions.
The orbital energies are calculated in momentum space
using Eq. (3).

Step 4. End of iterations. Steps 2 and 3 are repeated
until a given convergence threshold (energy, physical
property, or mean-squared deviation between successive
iterated functions) is reached.

ITl. ANALYTICAL AND NUMERICAL STRATEGIES

As first pointed out by Boys [20], the calculation of
bielectronic integrals is greatly simplified with gaussian
functions due to the property that the product of two
gaussians yields another gaussian. Similarly, explicit
calculations through first iteration, k =1 in Eq. (4), are not
only possible with gaussians, but also relatively simple.
This, in particular, allows us to use trial orbitals ¢®(p)
coming from standard quantum chemistry packages and to
introduce them directly in the iterative scheme. Over the last
four years, we have accumulated results on atomic systems
showing systematic and substantial qualitative and quan-
titative improvements already after one single iteration on
their occupied atomic orbitals expressed as linear combina-
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tions of gaussian functions [3-77. A few but equally
encouraging results have recently been obtained on the H,
[12] and HeH™* [13] molecules with a simiiar type of
treatment.

In addition to the possibility of an explicit mathematical
treatment, the first iteration approach as described above
has at least four additional advantages over a fully numeri-
cal approach: (i) the large saving in computation time due
to the fact that the convolution products and other integrals
occurring in Eqgs. (3) and (4) can be evaluated explicitly, (ii)
the orbitals after one iteration are expressed in terms of
known transcendental functions and therefore can be
evaluated for as many momentum values as desired, (iii)
many properties can be evaluated numerically without dif-
ficulty, and (iv} the possibility to carry out an asymptotic
analysis on the results to assess the improvements.

One of the drawbacks of the first iteration approach,
however, is that computation of energy quantities, e.g.,
orbital and total energies, requires the evaluation of the
integrals occurring in Eq. (4) on the basis of the #!"'(p).
Unfortunately, the transcendental functions in terms of
which the ¢!')(p) are expressed at the end of the first itera-
tion (especially the convolution product) do not lead to
closed form expressions for these integrals and a numerical
procedure is therefore needed. This constitutes a barrier to
carrying out further iterations to improve the orbitals by
approaching the HF limit.

in order to carry out further iterations, we propose a
compromise beiween a fully numerical scheme and the sim-
ple first iteration approach. The scheme is based on the fact
that at the end of each iteration the ¢‘“)(py’s entail the main
qualitative characteristics of the exact solution and most
importantly the right asymptotic decay. The idea is thus to
fit the iterated analytical functions ¢*'(p) obtained at the
kth step on a finite set of gaussian functions and then to use
these fitted functions as a new set of trial functions ¢ #*'(p).
The advantage is twofold. First, with exponents and
linear coefficients that are specific for each orbital, the
encrgies and functions are quickly improved. Second,
the problematic convolution products and integrals are
efficiently computed in terms of the gaussian functions that
are obtained to represent the ¢#*“'(p)'s.

At the end of the whole process, the properties which do
not include convelution products in their expression (e.g.,
(p™'y, {pY, {p?), etc.) are obtained by direct numerical
integration of the last iterated orbitals ¢*'(p) to benefit
from the functional characteristics imparted by the
momentum space iteration.

The detaiis of the steps involved in the scheme are given
below and a corresponding flowchart is shown in Fig. 1.

Step 1. Initialization of the procedure. Trial functions
# ¥ p) come from the Fourier transforms of LCAO-GTO
orbitals which are the SCF resuits of calculations performed
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FIG. 1. Flowchart of the momentum space iterative scheme based on
a gaussian fit,

with standard quantum chemistry packages ({ie.,
Gaussian90 [21]). Both position space and momentum
space orbitals have the same orbital energies (%

Step 2. lteration of the wavefunction. Using the
Kellogg method [17], Eq. (4), the first iterated anaiytical
functions ¢'(p) are calculated and orthonormalized
numerically. The various gquantities entering Eq. (4) are
deduced when the trial orbitals ¢!”’(p) arc expressed as
lincar combinations of Gaussian functions. As seen in the
sequel, these quantitics are expressible in terms of known
transcendental functions. Two basic integrals, respectively
denoted [, and 7, have to be solved,

I{a,b,e,a,B,9q)

= [ dplap, p,+bp,+ c] e~ P s, (6)
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where p, and p, stand for the cartesian components p., p,,
and p, of the vector p. The final expressions are given in the
Appendix.

Step 2bis. Gaussian fit. The analytical functions ¢¢"'(p)
are represented as linear combinations of gaussian func-
tions, ¢£(p). This fit is carried out using a modified
version of the Gausfit package [22] based on the work of
Stewart [23] on gaussian fits of Slater functions. The
resulting functions are analytically orthonormalized.

The radial part of ¢ f(p) is expressed as a linear combina-
tion of spherical gaussians, which in the case of 1s and 2s
orbitals may be written as

¢i(p)=} dyexp(—a;p?), (8)

i=1

and in the case of 2p orbitals as

¢E(p)= Z d; p exp( _ar'jpz)'

i=1

(9)

Given a radial function ¢(p) to fit, one minimizes the
variance

|, @ rewe -7, (10)

where w{p) is a function which weights the contributions to
the integral according to their expected importance. From
several tests on Be and Ne we have found that the following
weight functions are quite efficient:

w (p)=1+p (11)

and

@25 ana2p(P) =1+ p°. (12)

Gaussian functions form a complete set, but they do not
have the right asymptotic decay due to too low amplitudes
in regions of large p values. Therefore representations in
terms of gaussians are of much slower convergence than
Slater functions. Since contributions from high momenta
are essential to the energy, a second degree polynomial,
Eq. (12), is used to introduce them in the valence orbitals.

A set of nine gaussians allows a satisfactory fit with low
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variance, Eq. {10), about 10~ for the 15 and 2p orbitals
and 10~¢ for the 2s orbital. The valence orbitals with
node(s) are slightly more difficuit to fit. Under these condi-
tions, the iterative scheme converges to results close to HF
limit, but obviously it cannot approach it completely
because the fit is based on a limited number of gaussian
functions.

To prevent divergence and/or to speed up convergence at
the (k + 1)th iteration, it is suitable to build ¢£*'(p) from a
linear combination of the gaussian fit 5%~ (p) and the
analytical iterated function ¢"*)(p) (see Fig. 1). This
amounts to using a damping factor which is crucial when
dealing with the valence orbitals of anions.

Step 3. Calculation of energies of the iterated functions.
Orbital energies, Eq. (3), for the gaussian orbitals ¢£*)(p)
are calculated analytically in momentum space. Similarly to
what has been done in Step 2, the analytical calculation
of the energies, Eq.(3), requires the evaluation of an
integral /5:

d
h(a,b,e,d )= [ 3 Tap? p} + bp + ] +dl e, (13)

where p; and p, stand for the cartesian components p., p,,
and p. of the vector p. The final expressions are given in
the Appendix. As already explained, this leads to a very
significant gain in computer time and does not require
cumbersome checks on the numerical accuracy.

Step 4. End of iterations. The gaussian orbitals ¢#"'(p)
are used as trial functions, and Steps 2, 2bis, and 3 are
repeated until a given convergence threshold {energy,
physical property, or mean-squared deviation between
successive iterated functions) is reached.

The whole process can be understood as a global
improvement of the trial functions to obtain orbital shapes
as close as possible to their HF limit. Properties other than
energies are then computed directly with these final iterated
functions by numerical integration, the numerical accuracy
being then relatively easy to control. In the case of atoms
isoelectronic to Be and Ne, the numerical calculations of
{p"> (n=1,2) quantities and the orthonormalization
factors (related to the overlap integrals), reduces to
integrals depending on two variables # and p in spherical
coordinates:

fi=] dpp" | d0sin(®)4(p.0) #:(p.0).  (14)

The evaluation of such integrals is carried out with the
Gavuss-Legendre quadrature method with a change of
variable proposed by Ishikawa [8], whereas the angular
part is calculated analytically.
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TABLE I

Convergence towards HF Limits of the Atomic Orbital Proper-
ties (in a.u.) of Be Computed by the Momentum Space Method
Using a “Nine-Gaussian” Fit

STO-3G STO-3G
Be
Meration  {p~'>., {(p*H., Eyg {p™0n (P70 B¢
0 047680 13.195 —4.4840 2.1708' 1.6439 —0.25404
1 047817 13142 —4.7060 2.5557 11239 -0.30193
2 047602 13376 —4.7296 26440 10258 —0.30746
3 0.47489 13490 —4.7333 26721 10067  —0.30870
4 047441 13.537 —4.7337 26808 1.0015 —0.30911
5 047419 13557 —4.7333 26836 1.0018 —0.30922
6 047412 13564 —4.7332 26846 1.0018 —0.30922
7 047408 13.567 —4.7331 26843 10024 --0.30922
HF 0.47404 13.571 —4.7327 26851 1.0022 —0.30927
4-31G 4.31G
Be
iteration  (p™'yy, (P>, &5 p7 e (PPYa 825
0 047430 13540 —4.6749 23609  1.2475  —0.29200
1 047459 13545 —4.7162 25712 L0733 030474
2 0.47428 13.558 —4.7276 26448  1.0249 030777
3 047416 13564 —4.7312 26710 10091 030875
4 0.47411 13.566 —4.7329 26801 -1.0042 —0.30907
5 0.47408 13.568 —4.7331 26814 10032 —0.30917
3 047406 13569 —4.7331 26842 1.0030 —0.30920
7 _ — - — — .
HF 0.47404 13571 —4.7327 26851  1.0022 030927
STO-3G 4-31G
Be
iteration E, Vi E; Vi
0 —14.352 —1.9668 —14.557 —1.9844
1 —14.563 —2.0209 —14.572 — 1.9968
2 —14.572 —2.0118 —14.572 —1.9993
3 —~14.572 —2.0053 —14.572 —1999%
4 —14.572 —2.0024 —14.572 —2.0004
5 —14.572 —2.0010 —14.572 —2.0003
6 —14,572 —2.0005 —14.572 —2.0002
7 —14,572 —2.0003 — —
HF —14.573 —2.0000 — 14,573 —2.0000
Note. The trial functions are expressed in the STO-3G and 4-31G basis
sets.

IV. TESTS ON FOUR- AND TEN-ELECTRON ATOMS

In their ground states, the four-electron atoms Li~, Be,
and B~ all correspond to the same electronic configuration
1s°25%, and the ten-electron atoms F~, Ne, and Na * to the
electronic configuration 15°2s*2p®. They are representative
of the three electric states: cationic, neutral, and anionic.
The electron charge distribution of cations B* and Na* is
concentrated around the nucleus in position space, it
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corresponds to diffuse orbitals in momentum space. On the
contrary, the ¢lectrons of the anions Li~ and F~ tend to
occupy a larger portion of space around the nuclear center
which corresponds to momentum space atomic orbitals
with larger amplitudes near the origin. The neutral species
Be and Ne obviously correspond to an intermediate
behaviour.

In order to assess the quality of the atomic orbitals com-
puted with the method just described over a large domain of
momentum space, some physical properties of the orbitals
#*)(p) are computed at each iteration k. They are, total
energy (£;) and orbital energies ¢, (i = 1s, 2s, or 2p), Virial
ratio (Vi), and the <p">, (n=—1,2 and i=1s, 25, or 2p)
terms which probe preferentially the region of low
momenta:

p"yi= | dp $XP)[p"] 4.(p): (15)
04T 230
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FIG. 2. Convergence towards HF limits (dotted lines} of the atomic
orbital properties (in a.u.) of Be computed by the momentum space
method using a “nine-gaussian™ fit. The trial functions are expressed in the
STO-3G (white discs) and 4-31G (black discs) basis sets.
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TABLE I1

Convergence towards HF Limits of the Atomic Orbital Proper-
ties {in a.u.) of Ne Computed by the Momentum Space Method
Using a “Nine-Gaussian™ Fit

STO-3G STO-3G
Ne
iteration  {p~'>, (P>, £y, P PP &2
0 0.18027 90937 —32313 0.87082 9.766%9 —1.7061
1 0.18095 90359 -33.343 091135 99387 —2.0344
2 0.18029 91.566 -—32.927 0.88996 10517 —1.9569
3 0.18025 92006 ~—32.846 0.89282 10.631 —1.9430
4 0.18025 92.165 —32804 0.89568 10.609 —1.9361
5 0.18027 92216 -—32.788 0.89738 10587 —1.9335
6 0.18030 92230 -32.774 089942 10,534 —1.9295
7 0.18031 92.228 -32.971 0.89966 10.527 -—1.9299
HF 0.17994 92,538 —32.773 090593 10427 —1.9304
4-31G 4-31G
Ne
iteration  {p~'y {p>y £y s PP £y
0 0.17958 92.534 —32.696 090987 10386 —1.5050
1 0.18035 92035 —32.798 090202 10470 -—-1.9339
2 0.18033 92160 —32.776 0.89981 10512 —192853
3 0.1803t 92201 —32.773 0.89978 10.5336 —1.9294
4 0.18031 92.216 —32.772 0.89983 10529 —1.9293
5 0.18031 92230 -32771 090013 10524 —1.9293
6 _ _ — _ _ _
7 — _ — — — —
HF 0.17994 92538 32773 090593 10427 —1.9304
STO-3G STO-3G
Ne
iteration  {p~'),,  {p*Dy €2 E, Vi
0 0.47169 8.2861 —0.54306 ~126.61 —2.0083
1 0.57258 7.2989 —0.96342 — 12832 —2.0498
2 0.54751 8.0545 —086172 —128.50 —2.0171
3 0.54814 82733 —0.85818 —~128.53 —2.0075
4 0.54758 8.4004 —0.85366 ~ 12854 —2.00)4
5 0.54737 84634 —0.85117 ~12854 20007
6 0.54721 8.5105 —0.85085 —128.54 —2.0008
7 0.54711 8.519t —0.85048 — 12854 —2.0007
HF 0.54733 8.5272 —0.85044 —128.55 —2.0000
4-31G 4-31G
Ne
iteration  {p~'y,, (P, &2, E; Vi
0 0.52831 8.5386 —0.827s1 —128.36 —2.0000
] 0.54442 8.4629 —0.85543 — 12853 —2.0039
2 0.54589 8.5069 —0.84994 --128.54 —2.0018
3 0.54686 85144 —0.85050 —128.54 —2.0010
4 0.54703 8.5202 —0.85054 —128.54 —20006
5 0.54706 8.5259 —0.85055 — 12854 —2.0006
6 _ — - _ —
7 _ _ _ _ _
HF 0.54733 8.5272 —0.85044 —128.55 —2.0000
Note. The trial functions ar¢ expressed in the STO-3G abd 4-31G basis

sets.
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FIG. 3. Convergence towards HF limits (dotted lines) of the 2p
atomic orbital properties (in a.u.) of Ne computed by the momentum space
method using a “nine-gaussian™ fit. The trial functions are expressed in the
STO-3G (white discs) and 4-31G (black discs) basis sets.

The trial functions ¢#%(p) are obtained from the
Gaussian90 program {21] using the standard STO-3G
[24] and 4-31G bases [25] and they are used in the
iterative scheme to generate new orbitals ¢*)(p) obtained
after k iterations. These two bases are considered in the
comparison of the convergence of iterative cycles for trial
functions of different qualities. In both cases, the number of
the gaussian functions used in the fit is kept equal to nine.
The properties are compared to the near HF limit values
reported by Clementi and Roetti [26].

The evolution of the orbital properties through the itera-
tions are presented in Tablel and Fig. 2 for Be and in
Table IT and Fig. 3 for Ne (in Fig. 3 only the 2p orbital
properties are plotted because the evolution of the 1s and 2s
orbital properties of Be and Ne are similar). On the basis of
these results, one notes that: (i) the convergence is
monotonous, (it} the method is stable in the sense that

600 = 10,00 -
ls a is o
[ ]
- 0 . - 500 -
A J -3 .
c . £ oo} *
—-— - - L ]
-2,m‘ o
. st o
]
(=]
-6.00 —— -19.00
2 0 4 & B 2 6 21 4 6 8
n n

F1G. 4. Relation between the number (1) of gaussian functions and the
logarithm of their exponents {z,). The exponents of the functions obtained
at the end of an iterative scheme for Be using a “five-gaussian® fit are
denoted by black discs, whereas the extrapolated ones are denoted by white
discs.
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TABLE 111

Convergence towards HF Limits of the Atomic Orbital Properties (in a.u.) of B* and Li~ Computed by
the Momentum Space Method Using a “Nine-Gaussian” Fit

B +
iteration P (PP E15 P e (P> €24 Er Vi
0 0.37284 21.376 —7.9863 1.6637 2.7999 —{.84925 —23949 —1.9908
7 0.37091 21.903 —8.1856 1.7640 23282 —0.87373 —24.237 —2.0003
HF 0.37086 21.909 —8.1859 1.7662 2.3281 ~0.87381 —24238 —2.0000
Li~
iteration
0 0.66059 7.0260 —1.9686 3.1212 0.80691 0.1022% —72133 —1.9209
7 065648 72248 -2.3222 6.36272 0.20219 —001463 — 74280 —206002
HF 0.63644 7.2261 —2.3228 64347 0.20216 —0.01453 ~ 74282 —2.0000

Note. The wial functions are expressed in the STO-3G basis set.

different starting functions ultimately lead to similar resuits,
and (iii) results are very close to the HF limit, but not iden-
tical. This is due to the fact that, during the iterations, trial
functions ¢#*’(p) introduced in Eq. (4) are represented as
finite lincar combinations of gaussians. In Tabies IIT and 1V,
respectively, for Li~ and B* and lor F~ and Na*, only the
initial and the final results of the iterative procedure are
reported. In these cases the trial gaussian functions ¢5(p)
are expressed in the standard STO-3G basis [247 only and
a nine-gaussian fit is used. The trends obtained are very
similar to those already observed for Be and Ne.

The good resuits obtained for the species, irrespective of
their electric state (neutral, positive, or negative) allow us to
conclude the generality of the method. Our recent results on
negative atomic species [27], combined with the results

obtained for diatomic molecules [12, 13], further support
the hope that this momentum space approach is well suited
to describe properly the electronic structures of molecular
species, in general, and anions in particular.

From our resuits, a nine-gaussian fit has been found to be
a good compromise between accuracy and computer time.
In order to decrease the computer time, a smaller number of
gaussians can be used for the fits. But this reduced number
of gaussians yields a loss of accuracy, as it can be seen in the
case of Be properties with a fit of five gaussians, ¢,(p)-5G in
Table V, where the iterative procedure starts with STO-3G
orbitals. These results should be compared with the corre-
sponding ones in Table I obtained with a nine-gaussian fit.
In this case the computer time is five times longer than with
five gaussians. However, a possible way out to improve the

TABLE IV

Convergence towards HF Limits of the Atomic Orbital Properties (in a.u.) of Na* and F~ Computed by
the Momentum Space Method Using a “Nine-Gaussian™ Fit

Na*
iteration ' S M Eiy <P PP £2¢ P " P2 Eap Es Vi
0 0.16407 10993 —39.738 0.71645 15.172 —2.7473 0.39037 12.098 —1.3731 —15543 —1.9878
9 0.16335 112.17 —40.757 0.77617 13.800 -3.0722 044732 i1.814 —1.7972 —161.67 - —2.0006
HF 0.16302 112.55 —40.760 0.77934 13.679 —3.0737 0.44741 11.816 —1.7972 —16168 —2.0000
F-
iteration
0 020136 73.174 — 24706 0.98375 76517 —0.59974 0.53273 6.4960 +0.37319 —97.613 —19731
6 0.20079 74.244 —25828 10717 7.7058 —10721 0.72367 37316 —0.18039 —99454 20017
HF 0.20064 74.507 —25.830 1.0677 7.7689 —1.0744 0.72383 39277 —0.18085 —99459 —2.0000
Note. The trial functions are expressed in the STO-3G basis set.
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TABLE V

Comparison of the Quality of the Be Atom Properties

#°4p) #:(p)-5G ¢:(p)-9G HF
PPy, 13.195 13.545 13.564 13571
. 047680 047417 047410 047404
” —4.4840 —47253 —4.7342 —4.7327
T 1.6489 10186 099790 10022
<P, 21708 26766 26793 26851
£as —025404  —030736 —030922  —030927
Eq — 14352 - 14.560 —14.572 —14.573
Vi — 19668 —2.0010 —2.0008 —2.0000

Nore. ¢™(p) (STO-3G orbitals}, ¢{p)-5G (based on a fit of five
gaussians, STO-3G orbitals as initial guess), and ¢,(p)-9G (one-iteration
based on a nine-gaussian fit of which exponents result frem the
even-tempered based extrapolation).

results obtained with a five-gaussian fit is to determine addi-
tional exponents using a linear relation, analogous to the
one observed in the case of even-tempered basis set [28],
between the logarithms of the gaussian exponents o,
Eq. (%), of the basis functions of the fits. Starting with the
#,{p)-5G of Table V, additional exponents (namely the four
exponents at abscissas {—1,0} and {5, 6} in Fig. 4) are
obtained by an extrapolation of the linear relation between
the logarithms of the five-gaussian exponents of the core {or
the valence) orbitals. A new set of coefficients d,,, Eq. (9),
are then determined to compute the trial functions,
#*(p)-9G (Table V). In a straightforward program
implementation, the overall computing time to reach a
similar level of accuracy as that needed with nine gaussians
directly from the beginning is approximately reduced by a
factor of two.

V. FINAL REMARKS

The mixed analytical and numerical method, developed
to solve the atomic HF equations in momentum space, tries
to take best advantage (accuracy, convenience, and rapidity
of evaluation) of the analytical natures of the trial and
iterated functions. The numerical part is necessary to go
beyond the first iteration in a manageable way in order to
converge near the HF limits. The good quality of the results
obtained in this way for neutral, cationic, or anionic species
shows the generality of the method and is an incentive to
extend it to treat polyatomic molecules.

APPENDIX A

In this appendix only the final expressions of integrals [,
I,, and I are given. The principle of the deduction can be
found in Refs. [ 3, 127, where all the details are given for the
specific case of 1s orbitals.
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and where 6, is the Kronecker delta, and Daw(¢) denotes
the so-called Dawson function [297:

Daw(t)=e " L dx e, 1)
And for I,
Ii{a, b, ¢, d, a)
=J%[apfpf+bpf+cp}+d]e"“"l, (22)
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